Entwurf

DIN 4084

Einsprüche bis 2021-06-09 Vorgesehen als Ersatz für DIN 4084:2009-01

ICS 93.020

Entwurf

Baugrund – Geländebruchberechnungen

Soil –

Calculation of embankment failure and overall stability of retaining structures

Sol –

Calcul de faillance des talus

Anwendungswarnvermerk

Dieser Norm-Entwurf mit Erscheinungsdatum 2021-04-09 wird der Öffentlichkeit zur Prüfung und Stellungnahme vorgelegt.

Weil die beabsichtigte Norm von der vorliegenden Fassung abweichen kann, ist die Anwendung dieses Entwurfs besonders zu vereinbaren.

Stellungnahmen werden erbeten

- vorzugsweise online im Norm-Entwurfs-Portal von DIN unter www.din.de/go/entwuerfe bzw. f
 ür Norm-Entwürfe der DKE auch im Norm-Entwurfs-Portal der DKE unter www.entwuerfe.normenbibliothek.de, sofern dort wiedergegeben;
- oder als Datei per E-Mail an nabau@din.de möglichst in Form einer Tabelle. Die Vorlage dieser Tabelle kann im Internet unter www.din.de/go/stellungnahmen-norm-entwuerfe oder für Stellungnahmen zu Norm-Entwürfen der DKE unter www.dke.de/stellungnahme abgerufen werden;
- oder in Papierform an den DIN-Normenausschuss Bauwesen (NABau), 10772 Berlin oder Saatwinkler Damm 42/43, 13627 Berlin.

Die Empfänger dieses Norm-Entwurfs werden gebeten, mit ihren Kommentaren jegliche relevanten Patentrechte, die sie kennen, mitzuteilen und unterstützende Dokumentationen zur Verfügung zu stellen.

Gesamtumfang 37 Seiten

DIN-Normenausschuss Bauwesen (NABau)

- Entwurf -

E DIN 4084:2021-05

Inhalt

	Se	eite
Vorwo	rt	4
1	Anwendungsbereich	5
2	Normative Verweisungen	5
3	Begriffe, Symbole und Indices	5
3.1	Begriffe	6
3.2	Symbole	7
3.3	Indices	10
4	Unterlagen	10
5	Festlegung des Grenzzustands	10
6	Einwirkungen	11
7	Widerstände	13
7.1	Scherparameter des Bodens	13
7.2	Kräfte in Zuggliedern, Dübeln, Pfählen und Steifen	14
7.3	Scherwiderstände bei Stützkonstruktionen und Bauteilen,	
	die durch die Gleitfläche geschnitten werden	15
8	Gleitlinien und Bruchmechanismen	15
8.1	Allgemeines	15
8.2	Arten der Bruchmechanismen	15
8.3	Hinweise für die Wahl des Bruchmechanismus	17
8.4	Besondere Bedingungen	19
9	Berechnungsverfahren	20
9.1	Grenzzustandsbedingung	20
9.2	Verfahren mit kreisförmigen Gleitlinien	20
9.2.1	Lamellenverfahren	20
9.2.2	Lamellenfreie Verfahren bei kreisförmigen Gleitlinien	22
9.3	Lamellenverfahren für annähernd böschungsparallele Gleitlinien	25
9.4	Verfahren mit einer geraden Gleitlinie	25
9.4.1	Verankerter Gleitkeil	25
9.4.2	Böschungsparallele gerade Gleitlinie	26
9.5	Blockgleit-Verfahren	28
9.5.1	Allgemeines	28
9.5.2	Nachweis der Geländebruchsicherheit	29
9.6	Verfahren der zusammengesetzten Bruchmechanismen mit geraden inneren Gleitlinien	29
9.6.1	Allgemeines	29
9.6.2	Konstruktion der Bruchmechanismen	30
9.6.3	Nachweis der Geländebruchsicherheit	31
9.6.4	Berechnung des Ausnutzungsgrads <i>µ</i> des Bemessungswiderstands	31
9.6.5	Berücksichtigung der Schichtgrenzen	33
10	Besonderheiten bei Hängen	35
11	Begrenzung der Verformungen von Böschungen und Geländesprüngen ohne Bebauungen	35
Anhan	g A (informativ) Fallunterscheidungen für Zugglieder	36
Literat	turhinweise	37

Bilder

Bild 1 — Beispiele für Strömungsnetz, Wasserdruck und Porenwasserdruck nach Abschnitt 6 c)	
ohne Konsolidation	12
Bild 2 — Winkel ψ_A zwischen Gleitrichtung des Bruchmechanismus und Ankerrichtung im	
Schnittpunkt der Gleitlinie mit dem Anker	13

Bild 3 — Beispiel für einen Gleitkörper mit einer geraden Gleitlinie bei einer verankerten Wand	
ohne Einbindung in den Untergrund	16
Bild 4 — Beispiel für eine kreisförmige Gleitlinie und Lamelleneinteilung bei einer Böschung	16
Bild 5 — Beispiel für eine nicht kreisförmige, überwiegend böschungsparallele Gleitlinie mit	
Lamelleneinteilung nach Janbu [2]	17
Bild 6 — Beispiel für zusammengesetzte Bruchmechanismen mit geraden Gleitlinien	17
Bild 7 — Gleitkörper mit langer Verankerung	18
Bild 8 — Beispiel für eine Böschung mit Zugriss in kohäsivem Boden	19
Bild 9 — Beispiel für eine kreisförmige Gleitlinie und Lamelleneinteilung bei einer Böschung .	21
Bild 10 — Beispiel für das lamellenfreie Verfahren bei einer kreisförmigen Gleitlinie	23
Bild 11 — Beispiel für eine nicht kreisförmige, überwiegend böschungsparallele Gleitlinie mit	
Lamelleneinteilung nach Janbu [2]	25
Bild 12 — Beispiel für einen Gleitkörper mit einer geraden Gleitlinie bei einer verankerten	
Wand ohne Einhindung in den Untergrund	26
Bild 13 — Beispiel einer durchströmten Böschung mit Grundwasseraustritt und	
höschungsnaralleler Gleitlinie	27
Rild 14 — Reisniel für das Blockøleit-Verfahren	28
Rild 15 — Reispiele für die Frddruckrichtungen in den Lamellenschnitten heim	20
Blockgleit-Verfahren	29
Rild 16 — Raisniala zusammangasatztar Bruchmachanisman mit garadan Claitlinian	21
Did 10 — Deispiele zusammengesetzter Didenmethanismen int geräden diettimen	22
Dilu 17 — Deispiel eines zusammengesetzten Druchmechanismus für einen Celändesnnung in	33
Difu 10 – Deispiel eines zusähnnengesetzten Di uchniechanisinus für einen Gelanuespi ung in	
geschichtetein Baugrund mit senkrechten Lämenenschnitten än den Schnittpunkten der	24
	34
Bild A.1 — Fallunterscheidungen für Zugglieder, erlautert am Beispiel des Lamellenverfahrens	
nach 9.2.1	36

Tabellen

Tabelle 1 — Symbole	 		. ,							 																	7
Tabelle 2 — Indices	 	•	•		•	•	 •	•		 	•	•	•	•	•	•	• •	•	•	•				•	•		10